晚期糖基化终产物/晚期糖基化终产物受体信号通路促糖尿病血管钙化机制的研究进展
2018年9月

中华心血管病杂志,第46卷第9期 第745页-第750页

马文琦,刘乃丰

  正文

目前糖尿病已成为全世界的主要健康问题之一。糖尿病及其慢性并发症发病率呈现逐年上升趋势,严重影响人类健康和社会经济发展。据2015年国际糖尿病联盟(International Diabetes Federation, IDF)统计数据表明,全球约有4.15亿糖尿病患者,至2040年全球糖尿病患者人数可能超过6.42亿[1]。约11%的中国人患有糖尿病,其中包括很大比例的未确诊者[2]。糖尿病慢性并发症可累及心脏、血管、肾脏、神经系统等全身多个重要器官,而糖尿病血管病变是糖尿病患者最常见并发症和首要致死原因[3,4]。临床上约70%的糖尿病患者死于冠心病、卒中等心脑血管并发症[5]。糖尿病所致的高血糖引起体内代谢和血流动力学改变,包括晚期糖基化终产物(advanced glycation end products, AGE)形成、活性氧(reactive oxygen species, ROS)产生、蛋白激酶C (protein kinase C, PKC)活化、多元醇通路与肾素血管紧张素系统激活等,导致糖尿病血管病变的特征性改变[5]。此外,糖尿病患者广泛存在血管钙化,导致血管壁弹性和顺应性降低以及临床不良心血管事件发生风险增加[6]。糖尿病持续高血糖状态以及体内AGE的积聚是糖尿病血管钙化发病的重要诱因。因此,关注AGE与其受体(receptor for AGE, RAGE)及其下游相关信号转导通路,阐明糖尿病血管钙化发病机制,可为糖尿病血管钙化防治提供新的指导思路。

一、2型糖尿病与血管钙化

血管钙化是由细胞外高钙磷持续刺激以及局部或全身促钙化因子和抑制钙化因子调节失衡引起的骨特异性羟基磷灰石结晶在血管壁的主动沉积[7]。在氧化应激、钙磷代谢失衡、炎症细胞与促炎症因子、内质网应激、凋亡等损伤因素刺激下,血管平滑肌细胞(vascular smooth muscle cells, VSMC)由正常的收缩表型向成骨样细胞表型转化,并分泌碱性磷酸酶(alkaline phosphatase, ALP)、Runt相关转录因子2 (Runt-related transcription factor 2, Runx2)和骨形态发生蛋白-2 (bone morphogenetic protein 2, BMP-2)等多种成骨相关蛋白,促进血管钙化发病[8]图1)。而VSMC凋亡或坏死后释放的基质囊泡或凋亡小体具有高ALP活性,易于形成钙磷沉积微环境,将无定形磷酸钙转变为晶体型羟基磷灰石,而血管壁受损的弹性蛋白则为羟基磷灰石沉积提供了支架结构[6]。血管钙化是动脉粥样硬化、糖尿病血管病变、终末期肾病和高血压等疾病以及衰老的共同病理表现。临床流行病学调查表明80%的血管损伤和90%的冠状动脉疾病患者伴有血管钙化[9]

SM22α:平滑肌22α,SM22α-actin:平滑肌22α-肌动蛋白, Ca:钙,Pi:磷,RUNX2: Runt相关转录基因2,ALP:碱性磷酸酶

糖尿病患者血管壁广泛存在血管钙化。长期高血糖或氧化应激状态可诱发体内多种蛋白质、脂肪酸或核酸的氨基基团与还原糖的醛基之间发生非酶性糖基化反应,并且由此形成的AGE是导致糖尿病血管钙化发病的重要因素[10]。此外,糖尿病状态下高胰岛素血症、脂质代谢紊乱、肥胖、炎症、血管局部自分泌和旁分泌紊乱、糖尿病肾病等因素也参与了糖尿病血管钙化形成[11]。糖尿病内膜钙化主要与动脉粥样硬化性病变相关,比如冠状动脉钙化,表现为小而弥散分布的羟基磷灰石晶体沉积;而糖尿病中膜钙化主要发生在大、中动脉的平滑肌肌层,独立于动脉粥样硬化病变而存在,导致血管壁僵硬和顺应性降低[12]。糖尿病血管钙化是其不良心血管事件发生和死亡风险升高的重要危险因素[4]。在Framingham心脏研究中,糖尿病患者并发心血管病是非糖尿病患者的2~4倍[13]。此外,血浆AGE水平可以预测糖尿病患者心血管事件发生风险,相比于血浆糖化血红蛋白水平更具优势[14]

二、AGE/RAGE信号启动多条信号转导通路调控糖尿病血管钙化

AGE在血管壁损伤、炎症反应、氧化应激、信号调控中均发挥重要作用,其致病机制主要包括:直接与细胞内蛋白交联并破坏蛋白结构,影响细胞功能;通过与受体RAGE结合并激活多条信号转导通路;AGE积累可引起细胞外基质胶原纤维过度交联,导致血管顺应性降低[15]。糖尿病患者较正常人群具有更高的血清AGE水平,也是导致糖尿病血管钙化发病的重要危险因素之一。本课题组曾在载脂蛋白E基因敲除(ApoE-/-)糖尿病小鼠模型基础上,通过尾静脉注射外源性AGE成功诱导出糖尿病动脉粥样硬化伴钙化模型,发现血管壁斑块内AGE的蓄积随着血管钙化进展而增加;而在高脂和凋亡小体共同培养的VSMC中,AGE可上调ALP活性和Runx2表达,促进VSMC钙化,而高糖干预VSMC并没有引起上述改变[16]

RAGE是细胞表面免疫球蛋白超家族的成员之一,广泛分布于各种细胞表面,可与AGE特异性结合并激活细胞内多条信号转导通路,通过调控氧化应激、细胞凋亡及内质网应激等方式,加速动脉粥样硬化与血管钙化形成。RAGE参与细胞内信号转导、刺激细胞因子释放等多种生物学效应,包括诱导ROS产生、活化核因子-κB (nuclear factor κB,NF-κB)以及上调细胞间黏附分子-1(intercellular cell adhesion molecule-1, ICAM-1)、血管细胞黏附分子-1 (vascular cell adhesion molecule-1, VCAM-1)、单核细胞趋化蛋白-1(monocyte chemotactic protein-1, MCP-1)、血管内皮生长因子(vascular endothelial growth factor, VEGF)等动脉硬化相关基因的表达[17]。此外,AGE与RAGE结合能激活其下游多条信号转导通路,包括PKC、磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(phosphatei-dylinositol 3 kinase/serine-threonine kinase, PI3K/AKT)、p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38 MAPK)、Notch/肌节同源盒基因同系物2(muscle segment homeobox, homolog of 2, Msx2)等,调控VSMC生物学改变,启动糖尿病血管钙化[18,19]图2)。

AGE:晚期糖基化终产物, RAGE:晚期糖基化终产物受体, NADPH:还原型辅酶Ⅱ,PI3K:磷脂酰肌醇3-激酶,p38MAPK: p38丝裂原活化蛋白激酶,ERK1/2:细胞外信号调节激酶1/2,PKC:蛋白激酶C,TGF-β:转化生长因子-β,BMP-2:骨形态发生蛋白-2,ROS:活性氧,AKT:丝苏氨酸蛋白激酶,Msx2:肌节同源盒基因同系物2,NF-κB:核因子-κB, VSMC:血管平滑肌细胞

1.氧化应激相关的AGE/RAGE信号通路调控糖尿病血管钙化:

在外界条件刺激下,生物体内氧化与抗氧化系统失衡,导致体内ROS和活性氮类自由基等高活性分子产生增多或清除减少,导致细胞功能紊乱和氧化应激。ROS可作为第二信使参与细胞信号通路的调节,是导致糖尿病血管并发症的始动因素和主要病理生理学基础[7,20]。RAGE是ROS与氧化应激调控血管钙化的重要信号转导枢纽,可与相应配体结合并引起下游信号的转导和基因表达,激活包含转化生长因子β(transforming growth factor β, TGF-β)、p38 MAPK、细胞外信号调节激酶1/2(extracellular signal-regulated kinase1/2, ERK1/2)、NF-κB和NADPH氧化酶-1(NADPH oxidase-1, Nox-1)等在内的多条与氧化应激相关的信号通路,导致ROS生成增加[21]。我们曾报道了AGE通过与RAGE结合,诱导氧化应激和ROS生成增多,促进VSMC向成骨样细胞表型转化和血管钙化[22]。与低密度脂蛋白受体(low density lipoprotein receptor, LDLR)基因敲除(LDLR-/-)小鼠相比,RAGE和LDLR双基因缺失的动脉粥样硬化小鼠氧化应激水平和动脉粥样硬化斑块程度均降低[23]

还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)氧化酶是机体氧化还原信号的关键酶,也是体内ROS的主要来源,参与糖尿病血管损伤。AGE能激活NADPH氧化酶活性,上调氧化应激,促进VSCM钙化,而通过抑制NADPH氧化酶活性可减轻钙化[20,24]。并且进一步研究证实AGE诱导NADPH氧化酶活性可能与RAGE激活有关,而通过可溶性RAGE (soluble RAGE, sRAGE)与AGE结合阻断RAGE的活化,可拮抗AGE依赖性的ROS产生以及VSMC向成骨样细胞表型转化[25,26]。有报道显示通过RAGE抗体阻断RAGE效应、抑制RAGE下游p38 MAPK和ERK1/2信号通路、降低AGE相关的氧化应激等方式均可减轻AGE诱导的血管钙化[27]。此外,TGF-β基因在AGE相关的氧化应激调控血管钙化过程中也发挥了重要作用。AGE/RAGE可通过TGF-β依赖性途径激活p38 MAPK和ERK1/2,上调Smad基因,而Smad在VSMC向成骨样细胞转化中发挥了重要的转录调控作用[28,29]

2.凋亡相关的AGE/RAGE信号通路调控糖尿病血管钙化:

细胞凋亡是由基因控制的细胞程序性死亡过程,在生物体中普遍存在,在维持内环境稳定方面具有重要作用。细胞凋亡的信号转导通路主要包括内质网应激、线粒体损伤和死亡受体活化3条途径。细胞凋亡或坏死后的降解产物(凋亡小体和基质囊泡)是血管钙化的起始点,为钙化结晶提供了合适的成核微环境,而受损的血管壁弹性蛋白则为羟基磷灰石沉积提供了支架结构[30,31]。Proudfoot等[30]报道了在钙化结节形成前已经有凋亡产生,而抑制线粒体相关的凋亡途径可减轻VSMC钙化。在动脉粥样硬化的斑块中,凋亡的VSMC数目明显增多,同时细胞凋亡被认为是导致动脉粥样硬化斑块不稳定、破裂和血栓形成的重要原因[32]

AGE/RAGE可通过激活下游多条信号转导通路上调凋亡相关基因表达。AGE可诱导巨噬细胞内ROS和脂质过氧化物4-羟基壬烯酸(4-hydroxynonenal, 4-HNE)水平增加,通过激活NF-κB调控细胞凋亡[33]。AGE也可激活NADPH氧化酶相关的氧化应激诱导细胞凋亡,促进VSMC钙化[24]。Mahali等[34]报道了AGE/RAGE的激活可刺激细胞释放白细胞介素(interleukin, IL)-8,进而增加NF-κB和激活子蛋白-1 (activator protein 1,AP-1)的DNA结合活性及调控Bcl-xL/Bcl-2相关死亡启动因子(Bcl-xL/Bcl-2 associated death promoter, Bad)和凋亡相关基因Bax表达。在成骨细胞中,AGE/RAGE可分别通过p38 MAPK及JNK激活细胞凋亡,导致骨代谢异常[35],而药物性抑制ERK1/2、p38 MAPK和信号转导及转录激活因子3 (signal transducer and activator of transcription 3, STAT3)信号转导通路可减轻AGE诱导的细胞凋亡[36]

3.内质网应激相关的AGE/RAGE信号通路调控糖尿病血管钙化:

适当的内质网应激通过激活未折叠蛋白反应促进内质网稳态的恢复,对细胞起适应性保护作用,而长期的高血糖及其代谢产物AGE诱导VSMC内质网应激是加速糖尿病血管钙化进展的重要机制之一[37]

AGE通过激活p38 MAPK通路诱导内质网应激及凋亡,促进VSMC钙化;而内质网应激抑制剂(4-PBA)或敲减内质网应激相关的转录活化因子4(activating transcription factor 4, ATF4)基因可减轻血管钙化[18, 37]。在小鼠慢性肾病模型中,活化的RAGE通过上调哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)活性,激活蛋白激酶R样内质网激酶(protein kinase R-like ER kinase, PERK)-真核细胞起始因子2α(eukaryotic initiation factor 2α, eIF2α)-活化转录因子4(activating transcription factor 4, ATF4)通路引起内质网应激,促进VSMC向成骨样细胞表型转化以及主动脉钙化,而抑制mTOR或内质网未折叠蛋白反应可减轻血管钙化[38]。在高脂饮食诱导动脉粥样硬化性的小鼠模型中,RAGE基因缺陷可减轻内质网应激和主动脉瓣钙化[39]。Liberman等[40]报道了BMP-2/NADPH介导的氧化应激上调内质网应激相关蛋白葡萄糖调节蛋白78 (glucose regulated protein 78, GRP78)、肌醇必需酶1 (inositol-requiring enzyme 1, IRE1)和X-盒结合蛋白1 (X-box binding protein1, XBP1)的表达,促进VSMC钙化;进一步研究发现抑制氧化应激或内质网应激可减轻骨转录因子Runx2表达和VSMC钙化,表明氧化应激可能是联系内质网应激与钙化的潜在机制。也有文献报道在某些特定条件下,比如外核苷酸焦磷酸酶/磷酸二酯酶1(ectonucleotide pyrophosphatase/phosphodiesterase1, ENPP1)缺陷的情况下,CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein, CHOP)可能在血管钙化中起保护作用[41]

此外,内质网应激是激活细胞凋亡途径又一重要因素,且与凋亡存在交互作用,可能参与了糖尿病血管钙化[37]。在主动脉钙化大鼠模型中,GRP78和GRP94等内质网应激相关蛋白和内质网应激引起的细胞凋亡相关分子CHOP和含半胱氨酸的天冬氨酸蛋白水解酶-12 (cysteinyl aspartate specific proteinase 12, caspase-12)表达均升高[37]。此外,AGE/RAGE通过内质网应激上调凋亡相关基因caspase-9和B淋巴细胞瘤-2(B-cell lymphoma-2, Bcl-2)表达促进VSMC钙化,而拮抗RAGE可减轻凋亡[42]

4.糖酵解途径相关的AGE/RAGE信号通路调控糖尿病血管钙化:

VSMC主要以有氧代谢供能为主,而细胞代谢方式改变、代谢关键酶异常以及微环境乳酸化等细胞代谢微环境的改变是否影响血管钙化,目前少见报道。丙酮酸脱氢酶激酶(pyruvate dehydrogenase kinases, PDK)具有能够调节线粒体丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex, PDC)催化丙酮酸脱羧氧化的活性,并进一步将糖酵解与三羧酸循环以及三磷酸腺苷(adenosine-triphosphate, ATP)的生成联系在一起[43]。研究表明,PDK具有4种同工酶(PDK1、PDK2、PDK3、PDK4),参与多种代谢相关性疾病的调控,包括胰岛素抵抗、糖尿病、肥胖、肿瘤等,在细胞代谢和线粒体功能的调节中起着重要作用[44]。Lee等[45]报道了PDK4在动脉粥样硬化伴血管钙化患者中表达升高,且在维生素D3和尼古丁诱导的小鼠动脉钙化模型中,PDK4-/-小鼠的主动脉钙化程度较野生型小鼠低;进一步研究发现PDK4可直接与Smad1/5/8结合并促进其磷酸化,诱导血管钙化。我们课题组曾报道AGE/RAGE信号诱导细胞内ROS积累和氧化应激的产生,进而上调PDK4表达和ALP活性,促进VSMC向成骨样细胞表型转化和VSMC钙化[46]。同时,我们实验中也观察到AGE促进细胞内无氧糖酵解水平增加,导致细胞内代谢产物乳酸的堆积。有文献报道,乳酸可上调骨钙素蛋白(bone GLA protein, BGP)表达和ALP活性,诱导成骨细胞系MC3T3-E1细胞向成骨细胞分化[47]。临床证据表明血清乳酸水平也可能独立于其他心血管危险因素之外,与颈动脉粥样硬化相关[48]。有研究表明,BGP可通过缺氧诱导因子-1α(hypoxia inducible factor-1α, HIF-1α)依赖方式调控糖酵解相关基因磷酸果糖激酶(phosphorfructokinase, PFK)、PDK和葡萄糖转运载体(glucose transporter 1, GLUT1)表达,促进VSMC钙化[49],而阻断糖酵解途径可减轻骨代谢调控相关的Wnt (Wingless and INT-1)信号通路进而抑制血管钙化[50]。而细胞外液pH值改变也可影响VSMC向成骨样细胞表型转化和ALP活性[51]

三、AGE/RAGE相关的糖尿病血管钙化防治

糖尿病高血糖状态可导致体内AGE积累,加速糖尿病血管钙化。因此,严格控制血糖,纠正糖脂代谢紊乱是糖尿病血管钙化防治的前提。虽然部分药物可以通过干预糖基化终产物的形成途径和生物学效应减轻血清AGE水平以及糖尿病心血管预后,包括他汀类、噻唑烷二酮类、alagebrium (ALT-711)、血管紧张素受体阻滞剂、氨基胍等,但是受限于小样本研究以及随访时间较短,目前并未大规模推广[14]

此外,特异性药物抑制或基因敲除RAGE可拮抗AGE诱导的血管钙化。与野生型小鼠相比,RAGE敲除小鼠动脉损伤后VSMC增殖、迁移和内膜增生均受到抑制,而RAGE基因缺失表现出对高脂诱导ApoE-/-小鼠主动脉瓣膜钙化的保护作用[39, 52]。RAGE的异构体,包括sRAGE以及内源性分泌型RAGE(endogenous secretory RAGE, esRAGE),可竞争性结合RAGE的相关配体,阻碍RAGE表达所致的细胞功能障碍或炎症反应,减轻其对血管壁的损害,抑制血管钙化[53,54]。此外,阻断AGE/RAGE下游信号通路可减轻AGE对血管的损伤,减轻糖尿病血管钙化。Brodeur等[27]报道抑制AGE形成或阻断AGE/RAGE相关的下游信号通路可减轻糖尿病血管钙化。

总之,AGE/RAGE信号是一个复杂的信号启动枢纽,参与多条信号通路的传导与调控,导致糖尿病血管钙化。血清AGE水平对判断糖尿病严重程度及其相关发症具有一定的预测、诊断价值。目前大多数研究以AGE/RAGE信号为中心,通过抑制体内AGE的形成、阻断AGE与其受体相互作用、抑制RAGE的表达及阻断下游信号通路等方式来减少AGE对血管的损伤,减轻糖尿病血管钙化。此外,关于糖尿病状态下细胞代谢微环境改变对糖尿病血管钙化的影响亦值得进一步研究。


  参考文献

[1] Ogurtsova K, da RFJD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017,128:40-50. DOI: 10.1016/j.diabres.2017.03.024.


[2] RCW M. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018,61(6):1249-1260. DOI: 10.1007/s00125-018-4557-7.


[3] Snell-Bergeon JK, Budoff MJ, Hokanson JE. Vascular calcification in diabetes: mechanisms and implications[J]. Curr Diab Rep, 2013,13(3):391-402. DOI: 10.1007/s11892-013-0379-7.


[4] Forbes JM, Fotheringham AK. Vascular complications in diabetes: old messages, new thoughts[J]. Diabetologia, 2017,60(11):2129-2138. DOI: 10.1007/s00125-017-4360-x.


[5] Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications[J]. Curr Diabetes Rev, 2005,1(1):93-106.


[6] Otsuka F, Yasuda S, Noguchi T, et al. Pathology of coronary atherosclerosis and thrombosis[J]. Cardiovasc Diagn Ther, 2016,6(4):396-408. DOI: 10.21037/cdt.2016.06.01.


[7] Kay AM, Simpson CL, Stewart JA. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification[J]. J Diabetes Res, 2016,2016:6809703. DOI: 10.1155/2016/6809703.


[8] Leopold JA. Vascular calcification: mechanisms of vascular smooth muscle cell calcification[J]. Trends Cardiovasc Med, 2015,25(4):267-274. DOI: 10.1016/j.tcm.2014.10.021.


[9] 王中群,戴俏武,邵晨,等.血管钙化的骨调控机制新进展[J].中华心血管病杂志,2017,45(1):78-80. DOI: 10.3760/cma.j.issn.0253-3758.2017.01.017.


[10] Laakso M, Cederberg H. Glucose control in diabetes: which target level to aim for?[J]. J Intern Med, 2012,272(1):1-12. DOI: 10.1111/j.1365-2796.2012.02528.x.


[11] Chistiakov DA, Sobenin IA, Orekhov AN, et al. Mechanisms of medial arterial calcification in diabetes[J]. Curr Pharm Des, 2014,20(37):5870-5883.


[12] 周业波,陆峥飞,齐永芬.糖尿病与血管钙化[J].中国动脉硬化杂志, 2009, 17(3):241-245.


[13] Erbel R, M?hlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study[J]. J Am Coll Cardiol, 2010,56(17):1397-1406. DOI: 10.1016/j.jacc.2010.06.030.


[14] Nenna A, Nappi F, Avtaar SSS, et al. Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease[J]. Res Cardiovasc Med, 2015,4(2):e26949. DOI: 10.5812/cardiovascmed.4(2)2015.26949.


[15] Wang Z, Li L, Du R, et al. CML/RAGE signal induces calcification cascade in diabetes[J]. Diabetol Metab Syndr, 2016,8:83. DOI: 10.1186/s13098-016-0196-7.


[16] Wang Z, Jiang Y, Liu N, et al. Advanced glycation end-product Nε-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes[J]. Atherosclerosis, 2012, 221(2):387-396. DOI: 10.1016/j.atherosclerosis.2012.01.019.


[17] Yamagishi S, Maeda S, Matsui T, et al. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes[J]. Biochim Biophys Acta, 2012,1820(5):663-671. DOI: 10.1016/j.bbagen.2011.03.014.


[18] Tanikawa T, Okada Y, Tanikawa R, et al. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK[J]. J Vasc Res, 2009,46(6):572-580. DOI: 10.1159/000226225.


[19] Wang Y, Zhang ZY, Chen XQ, et al. Advanced glycation end products promote human aortic smooth muscle cell calcification in vitro via activating NF-κB and down-regulating IGF1R expression[J]. Acta Pharmacol Sin, 2013,34(4):480-486. DOI: 10.1038/aps.2012.166.


[20] Tada Y, Yano S, Yamaguchi T, et al. Advanced glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of NAD(P)H-oxidase[J]. Horm Metab Res, 2013,45(4):267-272. DOI: 10.1055/s-0032-1329965.


[21] Daffu G, del PCH, O'Shea KM, et al. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond[J]. Int J Mol Sci, 2013, 14(10):19891-19910. DOI: 10.3390/ijms141019891.


[22] Wei Q, Ren X, Jiang Y, et al. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress[J]. BMC Cardiovasc Disord, 2013,13:13. DOI: 10.1186/1471-2261-13-13.


[23] Sun L, Ishida T, Yasuda T, et al. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice[J]. Cardiovasc Res, 2009,82(2):371-381. DOI: 10.1093/cvr/cvp036.


[24] Koike S, Yano S, Tanaka S, et al. Advanced glycation end-products induce apoptosis of vascular smooth muscle cells: a mechanism for vascular calcification[J]. Int J Mol Sci, 2016,17(9):E1567. DOI: 10.3390/ijms17091567.


[25] Gawdzik J, Mathew L, Kim G, et al. Vascular remodeling and arterial calcification are directly mediated by S100A12 (EN-RAGE) in chronic kidney disease[J]. Am J Nephrol, 2011, 33(3):250-259. DOI: 10.1159/000324693.


[26] Hofmann BMA, Gawdzik J, Bukhari U, et al. S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic gene regulatory program[J]. Arterioscler Thromb Vasc Biol, 2011,31(2):337-344. DOI: 10.1161/ATVBAHA.110.217745.


[27] Brodeur MR, Bouvet C, Bouchard S, et al. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes[J]. PLoS One, 2014, 9(1):e85922. DOI: 10.1371/journal.pone.0085922.


[28] Hosen MJ, Coucke PJ, Le SO, et al. Perturbation of specific pro-mineralizing signalling pathways in human and murine pseudoxanthoma elasticum[J]. Orphanet J Rare Dis, 2014, 9:66. DOI: 10.1186/1750-1172-9-66.


[29] Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease[J]. FASEB J, 2004,18(1):176-178. DOI: 10.1096/fj.02-1117fje.


[30] Proudfoot D, Skepper JN, Hegyi L, et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies[J]. Circ Res, 2000,87(11):1055-1062.


[31] 齐永芬.关注血管钙化的基础和临床研究[J].中国动脉硬化杂志,2015,23(5):433-436.


[32] Zeini M, López-Fontal R, Través PG, et al. Differential sensitivity to apoptosis among the cells that contribute to the atherosclerotic disease[J]. Biochem Biophys Res Commun, 2007,363(2):444-450. DOI: 10.1016/j.bbrc.2007.09.004.


[33] Gao Y, Wake H, Morioka Y, et al. Phagocytosis of advanced glycation end products (AGEs) in macrophages induces cell apoptosis[J]. Oxid Med Cell Longev, 2017,2017:8419035. DOI: 10.1155/2017/8419035.


[34] Mahali S, Raviprakash N, Raghavendra PB, et al. Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: involvement of Ca2+ mediated by interleukin-8 protein[J]. J Biol Chem, 2011,286(40):34903-34913. DOI: 10.1074/jbc.M111.279190.


[35] Alikhani M, Alikhani Z, Boyd C, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways[J]. Bone, 2007,40(2):345-353. DOI: 10.1016/j.bone.2006.09.011.


[36] Chen H, Liu W, Wu X, et al. Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2, P38 and STAT3 signalling pathways[J]. Int Immunopharmacol, 2017,52:143-149. DOI: 10.1016/j.intimp.2017.09.004.


[37] Duan XH, Chang JR, Zhang J, et al. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification[J]. Apoptosis, 2013,18(9):1132-1144. DOI: 10.1007/s10495-013-0861-3.


[38] Panda DK, Bai X, Sabbagh Y, et al. Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification[J]. Am J Physiol Renal Physiol, 2018,314(6):F1046-1061. DOI: 10.1152/ajprenal.00350.2017.


[39] Wang B, Cai Z, Liu B, et al. RAGE deficiency alleviates aortic valve calcification in ApoE-/- mice via the inhibition of endoplasmic reticulum stress[J]. Biochim Biophys Acta, 2017,1863(3):781-792. DOI: 10.1016/j.bbadis.2016.12.012.


[40] Liberman M, Johnson RC, Handy DE, et al. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification[J]. Biochem Biophys Res Commun, 2011,413(3):436-441. DOI: 10.1016/j.bbrc.2011.08.114.


[41] Serrano RL, Yu W, Terkeltaub R. Mono-allelic and bi-allelic ENPP1 deficiency promote post-injury neointimal hyperplasia associated with increased C/EBP homologous protein expression [J]. Atherosclerosis, 2014,233(2):493-502. DOI: 10.1016/j.atherosclerosis.2014.01.003.


[42] Maltais JS, Simard E, Froehlich U, et al. iRAGE as a novel carboxymethylated peptide that prevents advanced glycation end product-induced apoptosis and endoplasmic reticulum stress in vascular smooth muscle cells[J]. Pharmacol Res, 2016,104:176-185. DOI: 10.1016/j.phrs.2015.12.015.


[43] Jeong JY, Jeoung NH, Park KG, et al. Transcriptional regulation of pyruvate dehydrogenase kinase[J]. Diabetes Metab J, 2012,36(5):328-335. DOI: 10.4093/dmj.2012.36.5.328.


[44] Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases[J]. Arch Physiol Biochem, 2006,112(3):139-149. DOI: 10.1080/13813450600935263.


[45] Lee SJ, Jeong JY, Oh CJ, et al. Pyruvate dehydrogenase kinase 4 promotes vascular calcification via SMAD1/5/8 phosphorylation[J]. Sci Rep, 2015,5:16577. DOI: 10.1038/srep16577.


[46] Ma WQ, Han XQ, Wang Y, et al. Nε-carboxymethyl-lysine promotes calcium deposition in VSMCs via intracellular oxidative stress-induced PDK4 activation and alters glucose metabolism[J]. Oncotarget, 2017, 8(68):112841-112854. DOI: 10.18632/oncotarget.22835.


[47] Wu Y, Wang M, Feng H, et al. Lactate induces osteoblast differentiation by stabilization of HIF1α[J]. Mol Cell Endocrinol,2017,452:84-92. DOI: 10.1016/j.mce.2017.05.017.


[48] Shantha GP, Wasserman B, Astor BC, et al. Association of blood lactate with carotid atherosclerosis: the atherosclerosis risk in communities (ARIC) carotid MRI Study[J]. Atherosclerosis, 2013, 228(1):249-255. DOI: 10.1016/j.atherosclerosis.2013.02.014.


[49] Idelevich A, Rais Y, Monsonego-Ornan E. Bone Gla protein increases HIF-1alpha-dependent glucose metabolism and induces cartilage and vascular calcification[J]. Arterioscler Thromb Vasc Biol, 2011,31(9):e55-71. DOI: 10.1161/ATVBAHA.111.230904.


[50] Rashdan N, Macrae V. Investigating the role of aerobic glycolysis in arterial calcification [J]. Heart, 2017, 103(Suppl 5):A144-145.


[51] 白亚玲,徐金升,田恬,等.间歇性碱刺激对高磷诱导的大鼠血管平滑肌细胞钙化的影响及机制[J].中华心血管病杂志,2017,45(6):519-525. DOI: 10.3760/cma.j.issn.0253-3758.2017.06.015.


[52] Sakaguchi T, Yan SF, Yan SD, et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis[J]. J Clin Invest, 2003,111(7):959-972. DOI: 10.1172/JCI17115.


[53] Kim HS, Chung W, Kim AJ, et al. Circulating levels of soluble receptor for advanced glycation end product are inversely associated with vascular calcification in patients on haemodialysis independent of S100A12 (EN-RAGE) levels[J]. Nephrology (Carlton), 2013,18(12):777-782. DOI: 10.1111/nep.12166.


[54] Nasrallah MM, El-Shehaby AR, Osman NA, et al. Endogenous soluble receptor of advanced glycation end-products (esRAGE) is negatively associated with vascular calcification in non-diabetic hemodialysis patients[J]. Int Urol Nephrol, 2012,44(4):1193-1199. DOI: 10.1007/s11255-011-0007-x.


收藏此内容

推荐给朋友

请点击右上角
1发送给指定的朋友
2分享到朋友圈
3为了方便下次使用,请将微官网添加到收藏夹