肺上皮干细胞与肺部疾病研究进展
2016年10月

中华结核和呼吸杂志,第39卷第10期 第810页-第814页

李宽|吴琦|孙昕|陈怀永

  正文

肺上皮干细胞的研究是呼吸系统的重要研究热点之一。基底细胞和2型肺泡细胞等具有自我更新和分化能力,在呼吸道上皮修复与再生中发挥重要作用。支气管哮喘(简称哮喘)、慢阻肺、肺癌和流感等肺部疾病均伴随上皮细胞的损伤、增生或癌变。近年来对肺上皮干细胞的鉴定与功能调控的研究急剧增多,这些研究成果将加快揭示肺上皮干细胞在重大肺部疾病发生、发展中的作用机制,可以预见肺上皮干细胞将为治疗哮喘等重大肺部疾病提供新的靶标。

一、肺上皮细胞

肺的首要功能是进行肺泡与血液间的氧气和二氧化碳交换。成人肺脏含有超过40种细胞,覆盖呼吸道表面的是肺上皮细胞,其细胞总量约占整个肺脏的25%,其细胞类型具有区域分布特异性[1,2]。大气道(气管与支气管)部位覆盖着一层假复层柱状上皮,包括基底细胞、杯状细胞、分泌细胞、纤毛细胞和Club细胞(过去称为Clara细胞),这些细胞中散布着黏膜下腺体(submucosal glands, SMG)。分泌细胞、杯状细胞和Club细胞分泌多种黏蛋白,是组成覆盖气道上皮黏液的主要成分[1,3]。小气道部位(细支气管与终末细支气管)的细胞群包括Club细胞、纤毛细胞、神经内分泌细胞和少量基底细胞[1,3,4]。与末端细支气管相连的肺泡上皮黏膜主要由骰形2型肺泡细胞(alveolar epithelial cell 2,AT2)和鳞状1型肺泡细胞(AT1)组成。AT2细胞分泌多种表面活性物质,具有抗炎、抗氧化与抗菌作用,同时降低肺泡表面张力,增加肺的顺应性,从而保证肺泡与血液间的气体交换功能[1]

二、肺上皮干细胞

不同于小肠,肺上皮黏膜在正常情况下更新速度很慢,每天只有约1%的上皮被更新[5]。与肺上皮细胞群区域性分布的特点相呼应,呼吸道的不同部位存在不同的上皮干细胞。

1.气管、支气管上皮干细胞:

人气管、支气管假复层上皮深部有一种细胞,即基底细胞,具有多种分化潜能。因为干细胞的细胞周期长,胸腺嘧啶的衍生物(5-Bromo-2-deoxyUridine, Brdu)掺入干细胞的DNA后可滞留在干细胞内很长时间。Borthwick等[6]利用Brdu标记技术发现小鼠气管基底细胞表达细胞角蛋白14(Keratin 14, Krt14)和Krt18。Schoch等[7]通过构建Krt5-EGFP转基因小鼠发现气管Krt5基底细胞克隆形成率更高,提示基底细胞存在多个亚型细胞群,Krt5基底细胞能分化成Club细胞和纤毛细胞。Hong等[8]发现支气管上皮Krt5基底细胞也具有类似的多潜能性。Rock等[9]利用基因芯片技术发现气管Krt5基底细胞可能的新标志物肿瘤坏死因子受体超家族成员16(nerve growth factor receptor,NGFR), 用流式细胞术分选NGFR阳性人气管基底细胞同样具有自我更新和分化成纤毛细胞的特性。Krt5基底细胞表达转录因子p63,p63具有维持基底细胞数量稳定的作用[10]。气管上皮损伤后,基质细胞分泌的IL-6可激活STAT3,促进p63Krt5基底细胞向纤毛细胞分化[11]

2.细支气管上皮干细胞:

在细支气管分叉点有一小簇神经上皮小体,包含2种细胞,亚型克拉拉细胞分泌蛋白(clara cell secretary protein, CCSP)表达细胞和表达降钙素基因相关肽(calcitonin gene related peptide, cGRP)肺神经内分泌细胞(pulmonary neuroendocrine cells, PNEC)[5]。CCSP表达细胞因胞质缺乏细胞色素P同工酶,不参与萘的代谢,从而具有抗损伤能力,可增殖分化为Club和纤毛细胞[12]。利用转基因小鼠损伤模型选择性杀伤CCSP表达细胞后,PNEC细胞不能修复细支气管上皮[5]。但Song等[13]通过建立cGRP世袭跟踪小鼠模型后发现,PNEC细胞能够分化为Club细胞和纤毛细胞,但选择性杀伤PNEC细胞后并不影响Club细胞的再生。可见,PNEC细胞在细支气管部位可能是"替补"上皮干细胞。

3.终末细支气管上皮干细胞:

Stripp等[14]利用萘特异性杀伤小鼠Club细胞后,在终末细支气管有少量细胞存活。经鉴定,这些细胞表达分泌珠蛋白家族成员1A1(secretoglobin family 1A member 1,Scgb1a1),但其水平比Club细胞低很多[15]。利用CreER-flox转基因策略将表达Scgb1a1的细胞特异性标记上增强型绿色荧光蛋白(EGFP),Scgb1a1阳性表达的终末细支气管干细胞能够分化成Club细胞,Club细胞作为祖细胞再分化成纤毛细胞和杯状细胞,从而有效修复损伤的气道上皮[12]。Kim等[16]在小鼠终末细支气管发现一种表达Scgb1a1和表面活性蛋白C(surfactant protein C, Sftpc)的细胞,称为气道肺泡干细胞(bronchioalveolar stem cells, BASC)。BASC能够抵抗萘诱导的肺损伤,在其后的修复中增殖[16],但并不参与终末细支气管或肺泡上皮的再生与修复[12]。研究结果表明终末细支气管部位的上皮干细胞表达CD24[2,17],但与Scgb1a1一样,CD24也表达于Club细胞,因此CD24和Scgb1a1都不是终末细支气管上皮干细胞的特异性标志物。为了寻找终末细支气管上皮干细胞的特异性标志物,Chen等[2]利用流式分选技术和基因芯片手段筛选了包括驱动蛋白家族成员3C(kinesin family member 3C, Kif3c)和par-6家庭细胞极性调节剂γ(par-6 family cell polarity regulator gamma, Pard3γ)等多个候选基因。与此同时,McQualter等[17]、Teisanu等[18]建立了气道上皮干细胞三维培养技术,实现了终末细支气管上皮干细胞功能的体外研究,揭示了肺成纤维细胞在终末细支气管上皮干细胞功能发挥中具有不可或缺的作用。另外,血管内皮细胞和平滑肌细胞也参与调控终末细支气管上皮干细胞的功能[19,20]。直到最近Zuo等[4]利用连续切片样本发现,在小鼠终末细支气管每3~4张切片中可发现1个p63Krt5基底细胞。与小鼠不同,研究结果早已证明人的终末细支气管存在基底细胞,只不过丰度不及气管或支气管[21]

4.肺泡上皮干细胞:

肺泡是完成气体交换的重要部位,肺泡上皮干细胞负责维持肺泡上皮的完整。Kapanci等[22]和Evans等[23]相继在猴子和大鼠的肺损伤中发现,AT2细胞增殖、分化,覆盖裸露的胶原,取代受损的AT1细胞,首次提出AT2是肺泡上皮干细胞且具有分化成为AT1细胞的能力[24,25]。利用世袭跟踪小鼠Sftpc-CreERT2和Rosa26R-tdTm研究后发现,部分AT2细胞能够抵抗博来霉素引起的肺泡损伤而存活下来,分化成AT1细胞参与肺泡上皮的修复[26]。体外三维培养小鼠和人源AT2细胞都证明其具有自我更新能力[26]。肺泡上皮细胞还存在其他再生机制。在肺叶切除后,AT1细胞会增殖并分化为AT2细胞[27]。Londhe等[28]发现一种具有CCSP启动子活性的细胞参与小鼠肺泡上皮的修复。Chapman等[29]发现一种Integrinα6β4SPClow/-的肺泡细胞在博来霉素引起的肺泡损伤后能分化成小鼠AT2细胞。陈怀永等(待发表)利用小鼠模型证实了这一稀有细胞的存在,并且筛选出其特异性标志物如ETS-related transcription factor 5(Etv5)和Neuropilin-1(Nrp1)等。终末细支气管上皮干细胞也可能参与肺泡上皮的修复[2,18],但只有等到鉴定出这些干细胞的特异性标志物,利用这些特异性标志物建立世袭跟踪小鼠模型才能最后确定终末细支气管上皮干细胞在肺泡上皮细胞再生中的作用。

三、肺上皮干细胞与肺部疾病
1.肺上皮干细胞与肺癌:

肺癌包括小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non-small cell lung cancer, NSCLC)。NSCLC存在3个组织学亚型:腺癌、鳞癌和大细胞癌。肺上皮干细胞可能是肺癌的起始细胞。不同类型的肺癌与不同肺上皮干细胞的突变相关。鳞癌主要发生在基底细胞富集的气管和支气管部位,虽然目前还没有动物实验证实,但病理结果显示鳞癌中表达多种基底细胞的特异性标志物,如Krt5、p63和Sox2[30]。与鳞癌类似,SCLC主要出现在PNEC细胞分布的细支气管部位,表达PNEC特异性标志物(如cGRP),具有神经内皮细胞形态学的特点[31],由此推断鳞癌可能与PNEC细胞有关。腺癌是NSCLC最普遍的亚型,约占50%,主要分布在肺外周。利用小鼠模型发现,在Sftpc启动子驱动下表达EGFR (L858R) 突变体,或是表达缺失外显子19的突变体激活细胞内EGFR信号后,引起小鼠气道上皮细胞生长、凋亡失控,从而发生肺腺癌[32]。同样,Sftpc启动子驱动下表达K-Ras(G12D)突变体也可致肺腺癌的发生[33,34],证明AT2细胞是肺腺癌的起始细胞。目前肺癌患者诊断和治疗前都要进行基因分型,根据基因突变类型决定治疗方案。

2.肺上皮干细胞与流感:

流感病毒是一种急性呼吸道疾病,对健康的危害大,且对人呼吸道上皮的损害程度与人的体质相关,如肥胖供者的肺泡上皮细胞对H1N1pdm09病毒更敏感[35]。在20世纪初,仅H1N1型流感就致全球数千万人死亡。肺上皮Oct4干祖细胞是流感病毒复制的靶标细胞,肺干祖细胞受流感病毒侵染后发生溶解,导致肺功能缺失、肺上皮损伤修复延迟[36]。流感病毒感染还可引起肺上皮的损伤,可遍及大气道、小气道直至肺泡区域。面对这种特殊的损伤,机体启动新的修复机制。在气管、支气管部位和终末细胞支气管部位,Club细胞增殖分化成AT1和AT2细胞[37,38],此外Club细胞还可分化成基底细胞[45],同时,此部位的p63Krt5干细胞也可分化成AT1和AT2细胞,选择性杀伤p63Krt5细胞,肺泡修复则受阻[4,30,31,32,33,34,35,36,37,38,39,40]。除了Club细胞,Vaughan等[41]发现一种谱系阴性的细胞在流感病毒感染时也可激活转化成p63Krt5细胞。可见,为了维持正常的肺功能,肺上皮在稳态和严重损伤的情况下存在多重修复机制。

3.肺上皮干细胞与肺纤维化:

肺纤维化目前无法根治,患者终末细支气管和肺泡上皮结构紊乱[42]。肺纤维化发生后,在紧邻肺上皮的区域会出现成纤维细胞灶(fibroblastic foci),肺固有纤维母细胞或肌成纤维细胞、肺实质或肺上皮保留的血液源间充质干细胞通过上皮细胞间质转型(epithelial-mesenchymal transition,EMT)参与成纤维细胞灶的形成[43]。Jonsdottir等[44]利用Ultroser(血清替代物)刺激源自支气管上皮的p63基底细胞后发现,该细胞中存在间充质细胞表型的细胞亚群,且这些细胞亚群容易发生表型变化,可能通过EMT参与纤维化过程。在博来霉素诱导的小鼠肺纤维化模型中,终末细支气管部分Club细胞、肺泡AT2和AT1细胞损伤[2]。在损伤后的修复过程中,终末细支气管部位的Scgb1a1细胞增殖,体外培养时,克隆形成能力增强[2]。选择性杀伤Scgb1a1细胞可诱发小鼠终末细支气管外发生纤维化[45]。在肺泡区域,部分AT2细胞能够抵抗博来霉素,并且增殖分化[26]。气管灌注AT2细胞可明显减轻博来霉素引起的肺损伤严重程度[46]。另外,Integrinα6β4SPClow/-的肺泡干细胞也可能参与博来霉素损伤后的肺泡修复过程[41]

4.肺上皮干细胞与哮喘:

哮喘的特征包括气道高反应、炎症和气道重塑。肺上皮损伤是哮喘气道炎症反应的源头,也是炎症持续存在的关键因素。哮喘患者出现肺上皮结构破损[47]。萘损伤肺上皮后也可引起气道高反应[48]。在修复过程中,肺干细胞在复杂的炎性环境中功能发生紊乱,如基底细胞过度增生[49,50]及Club细胞加速向杯状细胞分化[51,52]。Chen等[2]体外研究发现,哮喘常用药地塞米松可抑制Club细胞分泌黏液素,证实了地塞米松的药效;但地塞米松同时又促进Club细胞向杯状细胞分化,抑制向纤毛细胞分化,解释了地塞米松疗效不稳定的争议。因此,在抗炎的同时恢复肺干细胞的正常功能可以给哮喘的治疗带来突破。

5.肺上皮干细胞与慢阻肺:

肺小气道上皮增生是慢阻肺气流受限的主要因素之一[53,54],提示终末细支气管干细胞过度增殖。而吸烟患者支气管上皮基底细胞也出现异常增生[21]。气道上皮是慢阻肺患者最早出现病变的部位,吸烟引发基底细胞特异性分子变化,这种变化对慢阻肺的发病至关重要[55]。吸烟人群或慢阻肺患者的小支气管上皮细胞存在EMT,且在体外研究中能被香烟烟雾激活,这种上皮细胞EMT的激活可能与小气道壁增厚有关[56]。另外,气道黏液分泌增加,进一步加重气流受限,促发肺气肿。气管平滑肌细胞可促进肺上皮干细胞的功能[19],而慢阻肺患者平滑肌异常增厚,平滑肌细胞的异常改变是否影响肺上皮干细胞功能有待于进一步研究。

四、小结

肺上皮细胞的增生、破损或癌变与肺癌、流感、哮喘和慢阻肺等肺部重大疾病相关。肺干细胞的鉴定与功能正逐步被揭示,其在肺部疾病中功能的改变也不断被证实,但还有很多问题亟待研究,进一步揭示肺干细胞增殖与分化功能的信号调控机制,为开发通过调控肺干细胞功能、恢复肺上皮正常结构的新药提供靶点,给相关难治性肺疾病的治疗带来曙光。


  参考文献

参考文献

[1]

SnyderJC, TeisanuRM, StrippBR. Endogenous lung stem cells and contribution to disease[J]. J Pathol2009217( 2): 254- 264. DOI: 10.1002/path.2473.

[2]

ChenH, MatsumotoK, BrockwayBL, et al. Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury[J]. Stem Cells, 201230( 9): 1948- 1960. DOI: 10.1002/stem.1150.

[3]

BoersJE, AmbergenAW, ThunnissenFB. Number and proliferation of basal and parabasal cells in normal human airway epithelium[J]. Am J Respir Crit Care Med, 1998157( 6 Pt 1): 2000- 2006. DOI: 10.1164/ajrccm.157.6.9707011.

[4]

ZuoW, ZhangT, WuDZ, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration[J]. Nature, 2015517( 7536): 616- 620. DOI: 10.1038/nature13903.

[5]

HongKU, ReynoldsSD, GiangrecoA, et al. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion[J]. Am J Respir Cell Mol Biol, 200124( 6): 671- 681. DOI: 10.1165/ajrcmb.24.6.4498.

[6]

BorthwickDW, ShahbazianM, KrantzQT, et al. Evidence for stem-cell niches in the tracheal epithelium[J]. Am J Respir Cell Mol Biol, 200124( 6): 662- 670. DOI: 10.1165/ajrcmb.24.6.4217.

[7]

SchochKG, LoriA, BurnsKA, et al. A subset of mouse tracheal epithelial basal cells generates large colonies in vitro[J]. Am J Physiol Lung Cell Mol Physiol, 2004286( 4): L631- 642. DOI: 10.1152/ajplung.00112.2003.

[8]

HongKU, ReynoldsSD, WatkinsSet al. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium[J]. Am J Pathol, 2004164( 2): 577- 588. DOI: 10.1016/S0002-9440(10)63147-1.

[9]

RockJR, OnaitisMW, RawlinsEL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium[J]. Proc Natl Acad Sci U S A, 2009106( 31): 12771- 12775. DOI: 10.1073/pnas.0906850106.

[10]

DanielyY, LiaoG, DixonD, et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium[J]. Am J Physiol Cell Physiol, 2004287( 1): C171- C181. DOI: 10.1152/ajpcell.00226.2003.

[11]

TadokoroT, WangY, BarakLS, et al. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells[J]. Proc Natl Acad Sci U S A, 2014111( 35): E3641- 3649. DOI: 10.1073/pnas.1409781111.

[12]

RawlinsEL, OkuboT, XueY, et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium[J]. Cell Stem Cell, 20094( 6): 525- 534. DOI: 10.1016/j.stem.2009.04.002.

[13]

SongH, YaoE, LinC, et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis[J]. Proc Natl Acad Sci U S A2012109( 43): 17531- 17536. DOI: 10.1073/pnas.1207238109.

[14]

StrippBR, MaxsonK, MeraR, et al. Plasticity of airway cell proliferation and gene expression after acute naphthalene injury[J]. Am J Physiol, 1995269( 6 Pt 1): L791- 799.

[15]

ReynoldsSD, ZemkeAC, GiangrecoA, et al. Conditional stabilization of beta-catenin expands the pool of lung stem cells[J]. Stem Cells, 200826( 5): 1337- 1346. DOI: 10.1634/stemcells.2008-0053.

[16]

KimCF, JacksonEL, WoolfendenAE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005121( 6): 823- 835. DOI: 10.1016/j.cell.2005.03.032.

[17]

McQualterJL, YuenK, WilliamsB, et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung[J]. Proc Natl Acad Sci U S A2010107( 4): 1414- 1419. DOI: 10.1073/pnas.0909207107.

[18]

TeisanuRM, ChenH, MatsumotoK, et al. Functional analysis of two distinct bronchiolar progenitors during lung injury and repair[J]. Am J Respir Cell Mol Biol, 201144( 6): 794- 803. DOI: 10.1165/rcmb.2010-0098OC.

[19]

VolckaertT, DillE, CampbellA, et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury[J]. J Clin Invest, 2011121( 11): 4409- 4419. DOI: 10.1172/JCI58097.

[20]

LeeJH, BhangDH, BeedeA, et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis[J]. Cell, 2014156( 3): 440- 455. DOI: 10.1016/j.cell.2013.12.039.

[21]

RockJR, RandellSH, HoganBL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling[J]. Dis Model Mech, 20103( 9-10): 545- 556. DOI: 10.1242/dmm.006031.

[22]

KapanciY, WeibelER, KaplanHP, et al. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. Ⅱ. Ultrastructural and morphometric studies[J]. Lab Invest, 196920( 1): 101- 118.

[23]

EvansMJ, CabralLJ, StephensRJet al. Renewal of alveolar epithelium in the rat following exposure to NO2[J]. Am J Pathol, 197370( 2): 175- 198.

[24]

EvansMJ, CabralLJ, StephensRJ, et al. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2[J]. Exp Mol Pathol, 197522( 1): 142- 150.

[25]

FehrenbachH, KasperM, TschernigT, et al. Keratinocyte growth factor-induced hyperplasia of rat alveolar type Ⅱ cells in vivo is resolved by differentiation into type Ⅰ cells and by apoptosis[J]. Eur Respir J199914( 3): 534- 544.

[26]

BarkauskasCE, CronceMJ, RackleyCR, et al. Type 2 alveolar cells are stem cells in adult lung[J]. J Clin Invest, 2013123( 7): 3025- 3036. DOI: 10.1172/JCI68782.

[27]

JainR, BarkauskasCE, TakedaN, et al. Plasticity of Hopx(+) type Ⅰ alveolar cells to regenerate type Ⅱ cells in the lung[J]. Nat Commun, 201566727. DOI: 10.1038/ncomms7727.

[28]

LondheVA, MaisonetTM, LopezB, et al. A subset of epithelial cells with CCSP promoter activity participates in alveolar development[J]. Am J Respir Cell Mol Biol, 201144( 6): 804- 812. DOI: 10.1165/rcmb.2009-0429OC.

[29]

ChapmanHA, LiX, AlexanderJP, et al. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice[J]. J Clin Invest, 2011121( 7): 2855- 2862. DOI: 10.1172/JCI57673.

[30]

WilkersonMD, YinX, HoadleyKA, et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types[J]. Clin Cancer Res, 201016( 19): 4864- 4875. DOI: 10.1158/1078-0432.CCR-10-0199.

[31]

EramoA, HaasTL, De MariaR. Lung cancer stem cells: tools and targets to fight lung cancer[J]. Oncogene, 201029( 33): 4625- 4635. DOI: 10.1038/onc.2010.207.

[32]

PolitiK, ZakowskiMF, FanPD, et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors[J]. Genes Dev, 200620( 11): 1496- 1510. DOI: 10.1101/gad.1417406.

[33]

JohnsonL, MercerK, GreenbaumD, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice[J]. Nature, 2001410( 6832): 1111- 1116. DOI: 10.1038/35074129.

[34]

XuX, RockJR, LuY, et al. Evidence for type Ⅱ cells as cells of origin of K-Ras-induced distal lung adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2012109( 13): 4910- 4915. DOI: 10.1073/pnas.1112499109.

[35]

TravantyE, ZhouB, ZhangH, et al. Differential susceptibilities of human lung primary cells to H1N1 influenza viruses[J]. J Virol, 201589( 23): 11935- 11944. DOI: 10.1128/JVI.01792-15.

[36]

KhatriM, GoyalSM, SaifYM. Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication[J]. J Virol201286( 12): 6427- 6433. DOI: 10.1128/JVI.00341-12.

[37]

ZhengD, LimmonGV, YinL, et al. Regeneration of alveolar type Ⅰ and Ⅱ cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza[J]. PLoS One, 20127( 10): e48451. DOI: 10.1371/journal.pone.0048451.

[38]

ZhengD, LimmonGV, YinL, et al. A cellular pathway involved in Clara cell to alveolar type Ⅱ cell differentiation after severe lung injury[J]. PLoS One, 20138( 8): e71028. DOI: 10.1371/journal.pone.0071028.

[39]

KumarPA, HuY, YamamotoY, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection[J]. Cell, 2011147( 3): 525- 538. DOI: 10.1016/j.cell.2011.10.001.

[40]

TataPR, MouH, Pardo-SagantaA, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo[J]. Nature, 2013503( 7475): 218- 223. DOI: 10.1038/nature12777.

[41]

VaughanAE, BrumwellAN, XiY, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury[J]. Nature, 2015517( 7536): 621- 625. DOI: 10.1038/nature14112.

[42]

StrieterRM, GompertsBN, KeaneMP. The role of CXC chemokines in pulmonary fibrosis[J]. J Clin Invest, 2007117( 3): 549- 556. DOI: 10.1172/JCI30562.

[43]

WillisBC, duBoisRM, BorokZ. Epithelial origin of myofibroblasts during fibrosis in the lung[J]. Proc Am Thorac Soc, 20063( 4): 377- 382. DOI: 10.1513/pats.200601-004TK.

[44]

JonsdottirHR, ArasonAJ, PalssonR, et al. Basal cells of the human airways acquire mesenchymal traits in idiopathic pulmonary fibrosis and in culture[J]. Lab Invest, 201595( 12): 1418- 1428. DOI: 10.1038/labinvest.2015.114.

[45]

PerlAK, RiethmacherD, WhitsettJA. Conditional depletion of airway progenitor cells induces peribronchiolar fibrosis[J]. Am J Respir Crit Care Med, 2011183( 4): 511- 521. DOI: 10.1164/rccm.201005-0744OC.

[46]

Serrano-MollarA, NacherM, Gay-JordiG, et al. Intratracheal transplantation of alveolar type Ⅱ cells reverses bleomycin-induced lung fibrosis[J]. Am J Respir Crit Care Med, 2007176( 12): 1261- 1268. DOI: 10.1164/rccm.200610-1491OC.

[47]

GalliSJ, TsaiM, PiliponskyAM. The development of allergic inflammation[J]. Nature, 2008454( 7203): 445- 454. DOI: 10.1038/nature07204.

[48]

RoyceSG, LiX, TortorellaS, et al. Mechanistic insights into the contribution of epithelial damage to airway remodeling. Novel therapeutic targets for asthma[J]. Am J Respir Cell Mol Biol, 201450( 1): 180- 192. DOI: 10.1165/rcmb.2013-0008OC.

[49]

HackettTL, ShaheenF, JohnsonA, et al. Characterization of side population cells from human airway epithelium[J]. Stem Cells, 200826( 10): 2576- 2585. DOI: 10.1634/stemcells.2008-0171.

[50]

HackettTL, WarnerSM, StefanowiczD, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1[J]. Am J Respir Crit Care Med2009180( 2): 122- 133. DOI: 10.1164/rccm.200811-1730OC.

[51]

ParkKS, KorfhagenTR, BrunoMD, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium[J]. J Clin Invest, 2007117( 4): 978- 988. DOI: 10.1172/JCI29176.

[52]

Pardo-SagantaA, LawBM, Gonzalez-CeleiroM, et al. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge[J]. Am J Respir Cell Mol Biol, 201348( 3): 364- 373. DOI: 10.1165/rcmb.2012-0146OC.

[53]

RandellSH. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 20063( 8): 718- 725. DOI: 10.1513/pats.200605-117SF.

[54]

DecramerM, JanssensW, MiravitllesM. Chronic obstructive pulmonary disease[J]. Lancet, 2012379( 9823): 1341- 1351. DOI: 10.1016/S0140-6736(11)60968-9.

[55]

ShaykhievR, CrystalRG. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells[J]. Ann Am Thorac Soc, 201411( Suppl 5): S252- S258. DOI: 10.1513/AnnalsATS.201402-049AW.

[56]

MilaraJ, PeiroT, SerranoA, et al. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke[J]. Thorax, 201368( 5): 410- 420. DOI: 10.1136/thoraxjnl-2012-201761.

请等待工作人员审核信息,谢谢!

收藏此内容

推荐给朋友

请点击右上角
1发送给指定的朋友
2分享到朋友圈
3为了方便下次使用,请将微官网添加到收藏夹