颞下颌关节紊乱病的MRI评估
2020年2月

中华内分泌代谢杂志,第55卷第2期 第139页-第144页

陈志晔,胡敏

  摘要

颞下颌关节紊乱病的常见表现包括关节盘移位及退变、关节腔积液、髁突及翼外肌异常改变。MRI软组织分辨率较高,成为目前颞下颌关节紊乱病诊断的金标准。了解颞下颌关节紊乱病的常见MRI表现对于口腔医师选择正确的临床治疗决策具有重要意义。

  正文

颞下颌关节紊乱病(temporomandibular disorders,TMD)好发于中青年,发病高峰为20~40岁,女性多见,可累及10%~15%的成年人,但仅5%的患者进行诊疗[1,2]。TMD常表现为关节盘移位、关节腔积液、髁突退变、翼外肌异常改变等,MRI的软组织分辨率高,且具有多参数、多序列及任意角度成像等特点,是目前临床常用的颞下颌关节影像检查方法之一[3],并且MRI被认为是评估颞下颌关节盘-髁突关系及软组织改变的金标准[4,5,6,7]

一、颞下颌关节盘评估
1.关节盘形态评估:

①简单评估,闭口位为倒置"S"型,张口位"领结"型[8,9,10];②关节盘厚度评估(各带最大厚度),前带2 mm,中间带1.1 mm,后带2.8 mm;③常见关节盘形态学包括双凹型、后带增厚型、前带增厚型、拉伸型、折叠型及类圆形(图1)[10,11]

2.关节盘位置评估:

①按移位层面分为正常上位(关节盘后带后缘位于髁突上方12点的位置,即"盘-突12点")(图2A)、部分移位(部分层面移位)、完全移位(所有层面均移位)[3,9];②按移位方向分为前移位、后移位、内侧移位及外侧移位,关节盘后带后缘的切线与经过髁突12点方向的垂线前后夹角超过10°为前移位(图2B),关节盘内缘或外缘超过经髁突内外极连线长轴的垂线为侧方移位(图2C);③按前移位程度分为正常上位(0~10°)、轻微前移位(11~30°)、轻度前移位(31~50°)、中度前移位(51~80°)、重度移位(>80°)[10,11];④按张口位关节盘是否恢复正常位置分为可复性移位或不可复性移位。

3.关节盘信号评估:

由于关节盘为软骨,含水量(即质子含量)较少,因此在所有序列上均为低信号,以质子密度加权成像(proton density weighted imaging,PDWI)最为显著。PDWI图像上关节盘高信号提示退变可能,其中后带表现最为显著(图3)。

4.关节盘穿孔评估:

关节盘严重磨损或损伤可致关节盘穿孔。既往采用磁共振关节腔造影技术进行评估,但该技术为有创检查,目前临床主要采用斜矢状位脂肪抑制T2WI序列进行评估。当所示关节盘内见线样高信号影,并与关节上下腔相通时提示关节盘穿孔。

5.关节盘粘连:

关节盘粘连是指张口时关节盘不能从关节窝向前移动到关节结节,而是仍保持在关节窝内(图4),典型关节盘粘连与关节运动受限相关[12]

6.双板区评估:

①正常双板区软组织张口位时为呈负压结构,此时软组织膨胀(上板与关节窝相接触,保持一致)改变[13],但发生损伤时负压消失,膨胀改变消失(图5);②斜矢状位PDWI可清晰显示上板区,为关节盘后上方一线样低信号结构,通常连续走行,信号连续性中断提示上板撕裂改变(图5C)。

二、髁突评估
1.髁突形态学评估:

通常基于斜矢状位PDWI及横轴位脂肪抑制T2WI进行形态学评估,主要评估内容包括髁突位置、髁突形态、髁突长轴和短轴长度以及髁间角大小[3]

(1)髁突位置分类:根据髁突前、后斜面与关节窝前、后斜面切线间的距离大小可分为前位、后位及中立位(图6)。

(2)髁突形态分类:TMD患者的髁突形态分为卵圆形、扁平形、鸟嘴形(图7)[3];健康人群髁突形态存在个体差异,但髁突形态的变化,尤其是鸟嘴形髁突与关节盘前移有一定关系[1]

(3)髁突长轴及短轴:在闭口位横断面T2WI图像髁突最大长轴层面测量髁突内外极最大径(平行于髁突走形方向)长度即为髁突长轴,垂直于长轴的最大径(垂直于髁突走形方向)长度即为髁突短轴(图8A)。

(4)髁间角:在横轴位T2WI图像上,通过双侧髁突长轴延长线的夹角即为髁间角,髁间角的测量涉及双侧颞下颌关节(图8B)。

2.髁突骨质评估:

髁突骨质评估常依靠于锥形束CT进行评估,但也可基于MRI斜矢状位PDWI及斜矢状位脂肪抑制T2WI进行评估,评估指标主要包括骨皮质信号是否均匀连续(通常为线样低信号影)、有无骨赘、是否有水肿及囊性变(基于斜矢状位脂肪抑制T2WI序列)以及关节间隙是否变窄(图9)。

3.颞下颌关节骨关节病诊断:

颞下颌关节符合髁突扁平、骨赘形成、磨损和硬化中的1条即可诊断为骨关节病(图10)[14,15]

4.颞下颌关节运动状态评估:

图11,在张口斜矢状位PDWI图像上,经过关节窝顶部的水平切线a与经过关节结节顶部的垂直线b相交与O点,从O点顺时针开始按0~90°、90~120°、>120°分为3个区,其中关节窝顶部切线位于0°,关节结节垂直线位于90°。髁突头部位于0~90°区间内为运动受限;髁突头部位于90~120°区间内为正常;髁突头部位于>120°区间内为运动过度[16]

三、关节腔积液评估

颞下颌关节关节腔主要分为关节上腔及关节下腔,关节上腔为1.0~1.2 ml,关节下腔为0.5~0.6 ml[17]。关节腔积液评估主要基于斜矢状位脂肪抑制T2WI序列进行评估。关节腔积液按积液量依次分为4级:即无或少量积液(关节腔内无T2高信号影或沿关节面可见点状或线样T2高信号影)、中度积液、明显积液及大量积液[18]

四、翼外肌评估
1.翼外肌形态学评估:

翼外肌通常分为上腹及下腹,正常翼外肌通常头部边界清楚,至少斜矢状位两个层面都可以观察到。异常形态改变主要包括:①萎缩,肌肉大小无明显变化而大部分肌肉出现高信号的脂肪替代(斜矢状位PDWI);②肥大,在斜矢状位PDWI图像上肌腹中部体积增大但信号均匀,肌腹中部呈凸形改变;③挛缩,肌肉增大,同时可见纤维化改变,在斜矢状位PDWI上肌腹内可见低信号影(图12)[19]

2.翼外肌常见信号变化:

包括脂肪变性及纤维化,脂肪变性在斜矢状位PDWI表现为高信号影,常合并翼外肌萎缩改变;而纤维化表现为低信号影,常合并挛缩改变(图12)。

3.翼外肌评估:

翼外肌上腹附着于关节盘的形式主要分为3种类型,第1种类型上腹纤维附着于关节盘,下腹附着于髁突(29.6%);第2种类型上腹纤维附着于关节盘和髁突,下腹附着于髁突(40.8%);第3种类型上腹纤维附着于关节盘(29.6%),翼外肌的中间部分纤维(翼外肌上腹与下腹汇合处发出的纤维)及下腹纤维附着于髁突[20,21,22]。对于功能评估可以采用T2成像序列测量翼外肌的T2值进行评估,而对于翼外肌结构评估可以采用扩散张量成像及体积测量[23,24]。在临床上也可采用三维T2WI序列行闭口位及张口位成像,并采用多平面重建技术重建翼外肌上腹,沿翼外肌上腹最大走形方向测量翼外肌上腹长度,评估翼外肌收缩程度。

随着MRI技术的进步及对翼外肌在TMD发病中作用研究的深入,临床医师应重视对翼外肌结构、功能及病变的评估及治疗,综合分析翼外肌肌肉收缩程度和症状及体征有助于了解病情、肌肉收缩状况和肌肉性状。

总之,TMD的MRI评估序列主要包括PDWI及脂肪抑制T2WI,一般需行闭口位及张口位磁共振检查。MRI评估内容主要包括关节盘、髁突、关节腔积液及翼外肌等。部分颞下颌关节健康者也可见一定程度的关节盘移位,但无临床症状、因此对于关节盘移位与TMD的诊断应谨慎,需结合临床进行综合诊断[9,25]

目前临床上对于TMD的MRI诊断报告尚无统一的规范,推荐使用颞下颌关节的结构化图文报告系统,主要包括数据输入模块和图文报告。数据输入模块主要对关节盘、髁突、关节腔积液及翼外肌的相关评估参数进行量化,具体数据输入可结合影像报告系统进行;各项评估参数输入后自动生成图文报告,并由诊断报告医师采集典型图片,附于报告后。一般选取双侧斜矢状位PDWI闭口及张口位图片各1张。


  参考文献

参考文献

[1] Skog C, Fjellner J, Ekberg E, et al. Tinnitus as a comorbidity to temporomandibular disorders: a systematic review[J]. J Oral Rehabil, 2019, 46(1): 87-99. DOI: 10.1111/joor.12710.


[2] Greene CS, American Association for Dental R. Diagnosis and treatment of temporomandibular disorders: emergence of a new care guidelines statement[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 110(2): 137-139. DOI: 10.1016/j.tripleo.2010.04.032.


[3] 樊文萍,刘梦琦,张晓欢,等.颞下颌关节紊乱病患者髁突位置和形态的MRI观察[J].中华口腔医学杂志,2019,58(8): 522-526. DOI: 10.3760/cma.j.issn.1002-0098.2019.08.004. Fan WP, Liu MQ, Zhang XH, et al. MRI observation of condylar location and morphology in the patients with temporomandibular disc displacement[J]. Chin J Stomatol, 2019, 58(8): 522-526. DOI: 10.3760/cma.j.issn.1002-0098.2019.08.004.


[4] Peroz I, Seidel A, Griethe M, et al. MRI of the TMJ: morphometric comparison of asymptomatic volunteers and symptomatic patients[J]. Quintessence Int, 2011, 42(8): 659-667.


[5] Badel T, Pavicin IS, Jakovac M, et al. Disc and condylar head position in the temporomandibular joint with and without disc displacement[J]. Coll Antropol, 2013, 37(3): 901-906.


[6] Tomura N, Otani T, Narita K, et al. Visualization of anterior disc displacement in temporomandibular disorders on contrast-enhanced magnetic resonance imaging: comparison with T2-weighted, proton density-weighted, and precontrast T1-weighted imaging[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103(2): 260-266. DOI: 10.1016/j.tripleo.2006.02.003.


[7] Barmeir E, Teich S, Gutmcher Z. MRI of the temporomandibular joint: the gold standard[J]. Refuat Hapeh Vehashinayim (1993), 2014, 31(2):19-27, 86.


[8] Bag AK, Gaddikeri S, Singhal A, et al. Imaging of the temporomandibular joint: an update[J]. World J Radiol, 2014, 6(8): 567-582. DOI: 10.4329/wjr.v6.i8.567.


[9] Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint[J]. Cells Tissues Organs, 2005, 180(1): 6-21. DOI: 10.1159/000086194.


[10] Incesu L, Ta?kaya-Yilmaz N, O?ütcen-Toller M, et al. Relationship of condylar position to disc position and morphology[J]. Eur J Radiol, 2004, 51(3): 269-273. DOI: 10.1016/S0720-048X(03)00218-3.


[11] Hu YK, Yang C, Xie QY. Changes in disc status in the reducing and nonreducing anterior disc displacement of temporomandibular joint: a longitudinal retrospective study[J]. Sci Rep, 2016, 6: 34253. DOI: 10.1038/srep34253.


[12] Rao VM, Liem MD, Farole A, et al. Elusive "stuck" disk in the temporomandibular joint: diagnosis with MR imaging[J]. Radiology, 1993, 189(3): 823-827. DOI: 10.1148/radiology.189.3.8234710.


[13] Haiter-Neto F, Hollender L, Barclay P, et al. Disk position and the bilaminar zone of the temporomandibular joint in asymptomatic young individuals by magnetic resonance imaging[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 94(3): 372-378. DOI: 10.1067/moe.2002.127086.


[14] Tomas X, Pomes J, Berenguer J, et al. MR imaging of temporomandibular joint dysfunction: a pictorial review[J]. Radiographics, 2006, 26(3): 765-781. DOI: 10.1148/rg.263055091.


[15] Eberhard L, Giannakopoulos NN, Rohde S, et al. Temporomandibular joint (TMJ) disc position in patients with TMJ pain assessed by coronal MRI[J]. Dentomaxillofac Radiol, 2013, 42(6): 20120199. DOI: 10.1259/dmfr.20120199.


[16] Yang X, Pernu H, Pyhtinen J, et al. MR abnormalities of the lateral pterygoid muscle in patients with nonreducing disk displacement of the TMJ[J]. Cranio, 2002, 20(3): 209-221. DOI: 10.1080/08869634.2002.11746213.


[17] Toyama M, Kurita K, Koga K, et al. Magnetic resonance arthrography of the temporomandibular joint[J]. J Oral Maxillofac Surg, 2000, 58(9): 978-983; discussion 984. DOI: 10.1053/joms.2000.8738.


[18] Larheim TA, Westesson PL, Sano T. MR grading of temporomandibular joint fluid: association with disk displacement categories, condyle marrow abnormalities and pain[J]. Int J Oral Maxillofac Surg, 2001, 30(2): 104-112. DOI: 10.1054/ijom.2000.0017.


[19] D′Ippolito SM, Borri Wolosker AM, D′Ippolito G, et al. Evaluation of the lateral pterygoid muscle using magnetic resonance imaging[J]. Dentomaxillofac Radiol, 2010, 39(8): 494-500. DOI: 10.1259/dmfr/80928433.


[20] Mazza D, Marini M, Impara L, et al. Anatomic examination of the upper head of the lateral pterygoid muscle using magnetic resonance imaging and clinical data[J]. J Craniofac Surg, 2009, 20(5): 1508-1511. DOI: 10.1097/SCS.0b013e3181b09c32.


[21] Dergin G, Kilic C, Gozneli R, et al. Evaluating the correlation between the lateral pterygoid muscle attachment type and internal derangement of the temporomandibular joint with an emphasis on MR imaging findings[J]. J Craniomaxillofac Surg, 2012, 40(5): 459-463. DOI: 10.1016/j.jcms.2011.08.002.


[22] Litko M, Szkutnik J, Berger M, et al. Correlation between the lateral pterygoid muscle attachment type and temporomandibular joint disc position in magnetic resonance imaging[J]. Dentomaxillofac Radiol, 2016, 45(8): 20160229. DOI: 10.1259/dmfr.20160229.


[23] Nastro E, Bonanno L, Catalfamo L, et al. Diffusion tensor imaging reveals morphological alterations of the lateral pterygoid muscle in patients with mandibular asymmetry[J]. Dentomaxillofac Radiol, 2018, 47(1): 20170129. DOI: 10.1259/dmfr.20170129.


[24] Lopes SL, Costa AL, Gamba Tde O, et al. Lateral pterygoid muscle volume and migraine in patients with temporomandibular disorders[J]. Imaging Sci Dent, 2015, 45(1): 1-5. DOI: 10.5624/isd.2015.45.1.1.


[25] Imanimoghaddam M, Madani AS, Hashemi EM. The evaluation of lateral pterygoid muscle pathologic changes and insertion patterns in temporomandibular joints with or without disc displacement using magnetic resonance imaging[J]. Int J Oral Maxillofac Surg, 2013, 42(9): 1116-1120. DOI: 10.1016/j.ijom.2013.01.022.


思考题(多选)1.颞下颌关节关节盘的常见形态包括( )A.双凹型 B.后带或前带增厚型 C.拉伸型 D.折叠型 E.类圆形2.关于关节盘移位说法正确的是( )A.关节盘正常上位为"盘-突12点"关系,即关节盘后带后缘位于髁突上方12点位置B.按移位层面可分为部分移位及完全移位C.按移位方向可分为前移位、后移位及侧方移位D.按移位程度轻微、轻度、中度及中度前移位E.按张口位关节盘位置是否正常可分为可复性及不可复性移位3.关于髁突说法正确的是( )A.髁突位置可分为前位、中立位及后位B.髁突形态可分为卵圆形、扁平型及鸟嘴形C.颞下颌关节盘前移位患者髁突长短轴均变小D.髁间角减小可影响双侧颞下颌关节的咬合功能,可能是颞下颌关节发生关节盘移位的原因之一E.可采用脂肪抑制T2WI评估髁突水肿4.关于颞下颌关节骨关节病的常见表现为( )A.髁突扁平 B.髁突骨赘形成 C.髁突磨损 D.髁突硬化 E.髁突囊变5.颞下颌关节紊乱病翼外肌MRI表现包括( )A.萎缩 B.肥大 C.挛缩 D.脂肪变性 E.纤维化(注:答题说明及二维码详见本刊彩色活插页)

收藏此内容

推荐给朋友

请点击右上角
1发送给指定的朋友
2分享到朋友圈
3为了方便下次使用,请将微官网添加到收藏夹