参考文献
[1]
SzalmaS, KokaV, KhasanovaT,et al. Effective knowledge management in translational medicine[J]. J Transl Med, 2010, 8: 68. .
[2]
JohnsonJI, DeckerS, ZaharevitzD,et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials[J]. Br J Cancer, 2001, 84( 10): 1424- 1431. .
[3]
GilletJP, CalcagnoAM, VarmaS,et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance[J]. Proc Natl Acad Sci USA, 2011, 108( 46): 18708- 18713. .
[4]
SausvilleEA, BurgerAM. Contributions of human tumor xenografts to anticancer drug development[J]. Cancer Res, 2006, 66( 7): 3351- 3354. .
[5]
Rubio-ViqueiraB, HidalgoM. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients[J]. Clin Pharmacol Ther, 2009, 85( 2): 217- 221. .
[6]
JinK, TengL, ShenY,et al. Patient-derived human tumour tissue xenografts in immunodeficient mice:a systematic review[J]. Clin Transl Oncol, 2010, 12( 7): 473- 480. .
[7]
CallesA, Rubio-ViqueiraB, HidalgoM. Primary human non-small cell lung and pancreatic tumorgraft models--utility and applications in drug discovery and tumor biology[J]. Curr Protoc Pharmacol, 2013, : . .
[8]
KimMP, EvansDB, WangH,et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice[J]. Nat Protoc, 2009, 4( 11): 1670- 1680. .
[9]
PuigI, ChicoteI, TenbaumSP,et al. A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells[J]. Clin Cancer Res, 2013, 19( 24): 6787- 6801. .
[10]
DongX, GuanJ, EnglishJC,et al. Patient-derived first generation xenografts of non-small cell lung cancers:promising tools for predicting drug responses for personalized chemotherapy[J]. Clin Cancer Res, 2010, 16( 5): 1442- 1451. .
[11]
ZhangL, LiuY, WangX,et al. The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice[J]. Sci Rep, 2015, 5: 9447. .
[12]
TarantulVZ. Virus-associated lymphomagenesis[J]. Int J Biomed Sci, 2006, 2( 2): 101- 113.
[13]
YouWC, BrownLM, ZhangL,et al. Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions[J]. J Natl Cancer Inst, 2006, 98( 14): 974- 983. .
[14]
ZhangX, ClaerhoutS, PratA,et al. A renewable tissue resource of phenotypically stable,biologically and ethnically diverse,patient-derived human breast cancer xenograft models[J]. Cancer Res, 2013, 73( 15): 4885- 4897. .
[15]
WangX, FuX, HoffmanRM. A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice[J]. Int J Cancer, 1992, 51( 6): 992- 995.
[16]
FichtnerI, RolffJ, SoongR,et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers[J]. Clin Cancer Res, 2008, 14( 20): 6456- 6468. .
[17]
HiroshimaY, MaawyA, ZhangY,et al. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy[J]. Oncotarget, 2016, 7( 44): 71696- 71702. .
[18]
MarangoniE, Vincent-SalomonA, AugerN,et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays[J]. Clin Cancer Res, 2007, 13( 13): 3989- 3998. .
[19]
TalmadgeJE, SinghRK, FidlerIJ,et al. Murine models to evaluate novel and conventional therapeutic strategies for cancer[J]. Am J Pathol, 2007, 170( 3): 793- 804. .
[20]
DeRoseYS, WangG, LinYC,et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology,growth,metastasis and disease outcomes[J]. Nat Med, 2011, 17( 11): 1514- 1520. .
[21]
Garrido-LagunaI, UsonM, RajeshkumarNV,et al. Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer[J]. Clin Cancer Res, 2011, 17( 17): 5793- 5800. .
[22]
MortonCL, HoughtonPJ. Establishment of human tumor xenografts in immunodeficient mice[J]. Nat Protoc, 2007, 2( 2): 247- 250. .
[23]
ReyalF, GuyaderC, DecraeneC,et al. Molecular profiling of patient-derived breast cancer xenografts[J]. Breast Cancer Res, 2012, 14( 1): R11. .
[24]
BrownKM, XueA, MittalA,et al. Patient-derived xenograft models of colorectal cancer in pre-clinical research:a systematic review[J]. Oncotarget, 2016, 7( 40): 66212- 66225. .
[25]
DanielVC, MarchionniL, HiermanJS,et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro[J]. Cancer Res, 2009, 69( 8): 3364- 3373. .
[26]
LiS, ShenD, ShaoJ,et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts[J]. Cell Rep, 2013, 4( 6): 1116- 1130. .
[27]
BognerPN, PatnaikSK, PitoniakR,et al. Lung cancer xenografting alters microRNA profile but not immunophenotype[J]. Biochem Biophys Res Commun, 2009, 386( 2): 305- 310. .
[28]
KeysarSB, AstlingDP, AndersonRT,et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins[J]. Mol Oncol, 2013, 7( 4): 776- 790. .
[29]
Rubio-ViqueiraB, JimenoA, CusatisG,et al. An in vivo platform for translational drug development in pancreatic cancer[J]. Clin Cancer Res, 2006, 12( 15): 4652- 4661. .
[30]
ZhaoX, LiuZ, YuL,et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma[J]. Neuro Oncol, 2012, 14( 5): 574- 583. .
[31]
WhitefordCC, BilkeS, GreerBT,et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis[J]. Cancer Res, 2007, 67( 1): 32- 40. .
[32]
BertottiA, MigliardiG, GalimiF,et al. A molecularly annotated platform of patient-derived xenografts( "xenopatients" )identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J]. Cancer Discov, 2011, 1( 6): 508- 523. .
[33]
MigliardiG, SassiF, TortiD,et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas[J]. Clin Cancer Res, 2012, 18( 9): 2515- 2525. .
[34]
Von HoffDD, ErvinT, ArenaFP,et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369( 18): 1691- 1703. .
[35]
JulienS, Merino-TrigoA, LacroixL,et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer[J]. Clin Cancer Res, 2012, 18( 19): 5314- 5328. .
[36]
VidalA, MuñozC, GuillénMJ,et al. Lurbinectedin (PM01183),a new DNA minor groove binder,inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer[J]. Clin Cancer Res, 2012, 18( 19): 5399- 5411. .
[37]
ZhangL, YangJ, CaiJ,et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy[J]. Sci Rep, 2013, 3: 2992. .
[38]
DasTM, SalangsangF, LandmanAS,et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance[J]. Nature, 2013, 494( 7436): 251- 255. .
[39]
DanceyJE, BedardPL, OnettoN,et al. The genetic basis for cancer treatment decisions[J]. Cell, 2012, 148( 3): 409- 420. .
[40]
GarberK. Personal mouse colonies give hope for pancreatic cancer patients[J]. J Natl Cancer Inst, 2007, 99( 2): 105- 107. .
[41]
CalvoE, SoriaJC, MaWW,et al. A Phase I Clinical Trial and Independent Patient-Derived Xenograft Study of Combined Targeted Treatment with Dacomitinib and Figitumumab in Advanced Solid Tumors[J]. Clin Cancer Res, 2016, . .
[42]
MorelliMP, CalvoE, OrdoñezE,et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft[J]. J Clin Oncol, 2012, 30( 4): e45- e48. .
[43]
HidalgoM, BruckheimerE, RajeshkumarNV,et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer[J]. Mol Cancer Ther, 2011, 10( 8): 1311- 1316. .
[44]
ZhuY, TianT, LiZ,et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer[J]. Sci Rep, 2015, 5: 8542. .
[45]
HidalgoM, AmantF, BiankinAV,et al. Patient-derived xenograft models:an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4( 9): 998- 1013. .
[46]
NardellaC, LunardiA, PatnaikA,et al. The APL paradigm and the "co-clinical trial" project[J]. Cancer Discov, 2011, 1( 2): 108- 116. .
[47]
SiolasD, HannonGJ. Patient-derived tumor xenografts:transforming clinical samples into mouse models[J]. Cancer Res, 2013, 73( 17): 5315- 5319. .
[48]
TentlerJJ, TanAC, WeekesCD,et al. Patient-derived tumour xenografts as models for oncology drug development[J]. Nat Rev Clin Oncol, 2012, 9( 6): 338- 350. .
新型药物的研发是肿瘤转化医学研究的重要组成部分,临床前动物模型的建立与应用是新型药物研发和鉴定的关键与核心。人源肿瘤组织来源移植瘤模型(PDX模型)由于能够相对准确地反映原始肿瘤异质性及遗传信息多样性,从而可更准确地预测新型药物的临床疗效。PDX模型多通过外科手术、活检或过滤恶性胸腹水等方法获取部分原发或转移肿瘤组织,进一步处理后移植到免疫缺陷小鼠成瘤,处死取瘤,逐渐传代移植。接种裸鼠品系、肿瘤移植方式及移植部位均可对PDX模型的稳定性造成影响。大量研究表明,PDX肿瘤模型无论在病理组织结构、基因谱表达水平还是基因拷贝数突变等方面,均与原移植肿瘤保持较高一致性。PDX模型可稳定且准确地预测药物的有效性、筛选化疗药物敏感或耐药标记物以及对经典肿瘤化疗方案提供了优化方法。但PDX模型仍存在以手术切除为主要来源、构建时间过长、构建成功率不稳定和不能用于筛选免疫相关类药物等局限性。本文就PDX模型构建模式、模型特色、在肿瘤转化医学中的应用与发展予以系统阐述。